Enhancing Liquid State Machine Classification Through Reservoir Separability Optimization Using Swarm Intelligence and Multitask Learning
The Liquid State Machine (LSM) framework addresses supervised learning tasks involving spatio-temporal data streams. It relies on a randomly created, untrained Spiking Recurrent Neural Network (SRNN), called the “liquid,” to map inputs into task-independent representations. A s...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
IEEE
2024-01-01
|
| Series: | IEEE Access |
| Subjects: | |
| Online Access: | https://ieeexplore.ieee.org/document/10772455/ |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|