Enhancing Liquid State Machine Classification Through Reservoir Separability Optimization Using Swarm Intelligence and Multitask Learning

The Liquid State Machine (LSM) framework addresses supervised learning tasks involving spatio-temporal data streams. It relies on a randomly created, untrained Spiking Recurrent Neural Network (SRNN), called the “liquid,” to map inputs into task-independent representations. A s...

Full description

Saved in:
Bibliographic Details
Main Authors: Oscar I. Alvarez-Canchila, Andres Espinal, Marco A. Sotelo-Figueroa, Jorge A. Soria-Alcaraz, Horacio Rostro-Gonzalez
Format: Article
Language:English
Published: IEEE 2024-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10772455/
Tags: Add Tag
No Tags, Be the first to tag this record!