Primary health care data-based early warning system for dengue outbreaks: a nationwide case study in BrazilResearch in context

Summary: Background: Traditional surveillance presents limitations for early outbreak detection. Primary health care (PHC) administrative data applied to syndromic surveillance offers a cost-effective way to integrate early warning systems (EWS). We evaluate the potential of an EWS for dengue outbr...

Full description

Saved in:
Bibliographic Details
Main Authors: Rejane Santos-Silva, Pilar Tavares Veras Florentino, Thiago Cerqueira-Silva, Vinicius de Araújo Oliveira, Juracy Bertoldo Junior, George C.G. Barbosa, Gerson O. Penna, Viviane S. Boaventura, Pablo I. Pereira Ramos, Manoel Barral-Netto, Izabel Marcilio
Format: Article
Language:English
Published: Elsevier 2025-08-01
Series:The Lancet Regional Health. Americas
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2667193X25001759
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849424254113677312
author Rejane Santos-Silva
Pilar Tavares Veras Florentino
Thiago Cerqueira-Silva
Vinicius de Araújo Oliveira
Juracy Bertoldo Junior
George C.G. Barbosa
Gerson O. Penna
Viviane S. Boaventura
Pablo I. Pereira Ramos
Manoel Barral-Netto
Izabel Marcilio
author_facet Rejane Santos-Silva
Pilar Tavares Veras Florentino
Thiago Cerqueira-Silva
Vinicius de Araújo Oliveira
Juracy Bertoldo Junior
George C.G. Barbosa
Gerson O. Penna
Viviane S. Boaventura
Pablo I. Pereira Ramos
Manoel Barral-Netto
Izabel Marcilio
author_sort Rejane Santos-Silva
collection DOAJ
description Summary: Background: Traditional surveillance presents limitations for early outbreak detection. Primary health care (PHC) administrative data applied to syndromic surveillance offers a cost-effective way to integrate early warning systems (EWS). We evaluate the potential of an EWS for dengue outbreaks using PHC data in Brazil. Methods: We applied the Early Aberration Reporting System (EARS-C1 and EARS-C2) to arbovirus-related PHC encounters from October 1, 2022, to March 1, 2024, to establish an EWS across 5570 municipalities. We assessed EWS timeliness, sensitivity, and positive predictive value (PPV) against fixed-incidence dengue outbreak thresholds. Findings: Arbovirus-related PHC encounters occurred in 5364 (96.3%) and dengue cases in 5269 (94.6%) Brazilian municipalities. PHC-based warnings anticipated 48.5% (100 cases/100,000 inhabitants), and 68.4% (300/100,000) of outbreaks detected by existing surveillance. Timeliness was higher in municipalities with over 100,000 inhabitants. Interpretation: The EARS algorithm applied to PHC data anticipated outbreaks up to four weeks before suspected case reporting. Its use of routine data ensures broader coverage and scalability. This study demonstrates the feasibility of integrating PHC data into an EWS for early dengue outbreak detection in Brazil. Funding: Rockefeller Foundation’s Health Initiative and Fundação de Amparo à Pesquisa do Estado da Bahia, Brazil.
format Article
id doaj-art-a601c8c71b2b4cec8f5343f533e43d90
institution Kabale University
issn 2667-193X
language English
publishDate 2025-08-01
publisher Elsevier
record_format Article
series The Lancet Regional Health. Americas
spelling doaj-art-a601c8c71b2b4cec8f5343f533e43d902025-08-20T03:30:15ZengElsevierThe Lancet Regional Health. Americas2667-193X2025-08-014810116510.1016/j.lana.2025.101165Primary health care data-based early warning system for dengue outbreaks: a nationwide case study in BrazilResearch in contextRejane Santos-Silva0Pilar Tavares Veras Florentino1Thiago Cerqueira-Silva2Vinicius de Araújo Oliveira3Juracy Bertoldo Junior4George C.G. Barbosa5Gerson O. Penna6Viviane S. Boaventura7Pablo I. Pereira Ramos8Manoel Barral-Netto9Izabel Marcilio10Centro de Integração de Dados e Conhecimento para Saúde (Cidacs), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz Bahia), Salvador, BrazilCentro de Integração de Dados e Conhecimento para Saúde (Cidacs), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz Bahia), Salvador, Brazil; Laboratório de Medicina e Saúde Pública de Precisão, Fundação Oswaldo Cruz, Salvador, BrazilLaboratório de Medicina e Saúde Pública de Precisão, Fundação Oswaldo Cruz, Salvador, Brazil; Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United KingdomCentro de Integração de Dados e Conhecimento para Saúde (Cidacs), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz Bahia), Salvador, Brazil; Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, BrazilCentro de Integração de Dados e Conhecimento para Saúde (Cidacs), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz Bahia), Salvador, BrazilCentro de Integração de Dados e Conhecimento para Saúde (Cidacs), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz Bahia), Salvador, BrazilNúcleo de Medicina Tropical, Universidade de Brasília, Brasília, Brazil; Escola de Governo Fiocruz Brasília, Fiocruz Brasília, Brasília, BrazilLaboratório de Medicina e Saúde Pública de Precisão, Fundação Oswaldo Cruz, Salvador, Brazil; Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, BrazilCentro de Integração de Dados e Conhecimento para Saúde (Cidacs), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz Bahia), Salvador, BrazilCentro de Integração de Dados e Conhecimento para Saúde (Cidacs), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz Bahia), Salvador, Brazil; Laboratório de Medicina e Saúde Pública de Precisão, Fundação Oswaldo Cruz, Salvador, Brazil; Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, BrazilCentro de Integração de Dados e Conhecimento para Saúde (Cidacs), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz Bahia), Salvador, Brazil; Escola Bahiana de Medicina e Saúde Pública, Salvador, Brazil; Corresponding author. I. Marcilio Centro de Integração de Dados e Conhecimento para Saúde, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Parque Tecnológico Edf. Tecnocentro, Rua Mundo 121, sala 315, Salvador, BA 41745-715, Brazil.Summary: Background: Traditional surveillance presents limitations for early outbreak detection. Primary health care (PHC) administrative data applied to syndromic surveillance offers a cost-effective way to integrate early warning systems (EWS). We evaluate the potential of an EWS for dengue outbreaks using PHC data in Brazil. Methods: We applied the Early Aberration Reporting System (EARS-C1 and EARS-C2) to arbovirus-related PHC encounters from October 1, 2022, to March 1, 2024, to establish an EWS across 5570 municipalities. We assessed EWS timeliness, sensitivity, and positive predictive value (PPV) against fixed-incidence dengue outbreak thresholds. Findings: Arbovirus-related PHC encounters occurred in 5364 (96.3%) and dengue cases in 5269 (94.6%) Brazilian municipalities. PHC-based warnings anticipated 48.5% (100 cases/100,000 inhabitants), and 68.4% (300/100,000) of outbreaks detected by existing surveillance. Timeliness was higher in municipalities with over 100,000 inhabitants. Interpretation: The EARS algorithm applied to PHC data anticipated outbreaks up to four weeks before suspected case reporting. Its use of routine data ensures broader coverage and scalability. This study demonstrates the feasibility of integrating PHC data into an EWS for early dengue outbreak detection in Brazil. Funding: Rockefeller Foundation’s Health Initiative and Fundação de Amparo à Pesquisa do Estado da Bahia, Brazil.http://www.sciencedirect.com/science/article/pii/S2667193X25001759Early warning systemDengueArbovirusSurveillance
spellingShingle Rejane Santos-Silva
Pilar Tavares Veras Florentino
Thiago Cerqueira-Silva
Vinicius de Araújo Oliveira
Juracy Bertoldo Junior
George C.G. Barbosa
Gerson O. Penna
Viviane S. Boaventura
Pablo I. Pereira Ramos
Manoel Barral-Netto
Izabel Marcilio
Primary health care data-based early warning system for dengue outbreaks: a nationwide case study in BrazilResearch in context
The Lancet Regional Health. Americas
Early warning system
Dengue
Arbovirus
Surveillance
title Primary health care data-based early warning system for dengue outbreaks: a nationwide case study in BrazilResearch in context
title_full Primary health care data-based early warning system for dengue outbreaks: a nationwide case study in BrazilResearch in context
title_fullStr Primary health care data-based early warning system for dengue outbreaks: a nationwide case study in BrazilResearch in context
title_full_unstemmed Primary health care data-based early warning system for dengue outbreaks: a nationwide case study in BrazilResearch in context
title_short Primary health care data-based early warning system for dengue outbreaks: a nationwide case study in BrazilResearch in context
title_sort primary health care data based early warning system for dengue outbreaks a nationwide case study in brazilresearch in context
topic Early warning system
Dengue
Arbovirus
Surveillance
url http://www.sciencedirect.com/science/article/pii/S2667193X25001759
work_keys_str_mv AT rejanesantossilva primaryhealthcaredatabasedearlywarningsystemfordengueoutbreaksanationwidecasestudyinbrazilresearchincontext
AT pilartavaresverasflorentino primaryhealthcaredatabasedearlywarningsystemfordengueoutbreaksanationwidecasestudyinbrazilresearchincontext
AT thiagocerqueirasilva primaryhealthcaredatabasedearlywarningsystemfordengueoutbreaksanationwidecasestudyinbrazilresearchincontext
AT viniciusdearaujooliveira primaryhealthcaredatabasedearlywarningsystemfordengueoutbreaksanationwidecasestudyinbrazilresearchincontext
AT juracybertoldojunior primaryhealthcaredatabasedearlywarningsystemfordengueoutbreaksanationwidecasestudyinbrazilresearchincontext
AT georgecgbarbosa primaryhealthcaredatabasedearlywarningsystemfordengueoutbreaksanationwidecasestudyinbrazilresearchincontext
AT gersonopenna primaryhealthcaredatabasedearlywarningsystemfordengueoutbreaksanationwidecasestudyinbrazilresearchincontext
AT vivianesboaventura primaryhealthcaredatabasedearlywarningsystemfordengueoutbreaksanationwidecasestudyinbrazilresearchincontext
AT pabloipereiraramos primaryhealthcaredatabasedearlywarningsystemfordengueoutbreaksanationwidecasestudyinbrazilresearchincontext
AT manoelbarralnetto primaryhealthcaredatabasedearlywarningsystemfordengueoutbreaksanationwidecasestudyinbrazilresearchincontext
AT izabelmarcilio primaryhealthcaredatabasedearlywarningsystemfordengueoutbreaksanationwidecasestudyinbrazilresearchincontext