A Galerkin Finite Element Method for a Nonlocal Parabolic System with Nonlinear Boundary Conditions Arising from the Thermal Explosion Theory

In this paper, we discuss a class of nonlocal parabolic systems with nonlinear boundary conditions arising from the thermal explosion theory. First, we prove the local existence and uniqueness of the classical solution using the Leray–Schauder fixed-point theorem. Then, we analyze three Galerkin app...

Full description

Saved in:
Bibliographic Details
Main Authors: Qipeng Guo, Yu Zhang, Baoqiang Yan
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/5/861
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we discuss a class of nonlocal parabolic systems with nonlinear boundary conditions arising from the thermal explosion theory. First, we prove the local existence and uniqueness of the classical solution using the Leray–Schauder fixed-point theorem. Then, we analyze three Galerkin approximations of the system and derive the optimal-order error estimates: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">O</mi><mo stretchy="false">(</mo><msup><mi>h</mi><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></msup><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mn>2</mn></msup></semantics></math></inline-formula> norm for continuous-time Galerkin approximation, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">O</mi><mo stretchy="false">(</mo><msup><mi>h</mi><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>+</mo><msup><mrow><mo stretchy="false">(</mo><mo>Δ</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><mn>2</mn></msup><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> in the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mn>2</mn></msup></semantics></math></inline-formula> norm for Crank–Nicolson Galerkin approximation, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">O</mi><mo stretchy="false">(</mo><msup><mi>h</mi><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>+</mo><msup><mrow><mo stretchy="false">(</mo><mo>Δ</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><mn>2</mn></msup><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> in both <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mn>2</mn></msup></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>H</mi><mn>1</mn></msup></semantics></math></inline-formula> norms for extrapolated Crank–Nicolson Galerkin approximation.
ISSN:2227-7390