Deep learning-based interpretable prediction of recurrence of diffuse large B-cell lymphoma
Abstract Background The heterogeneous and aggressive nature of diffuse large B-cell lymphoma (DLBCL) presents significant treatment challenges as up to 50% of patients experience recurrence of disease after chemotherapy. Upfront detection of recurring patients could offer alternative treatments. Dee...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-05-01
|
| Series: | BJC Reports |
| Online Access: | https://doi.org/10.1038/s44276-025-00147-0 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Background The heterogeneous and aggressive nature of diffuse large B-cell lymphoma (DLBCL) presents significant treatment challenges as up to 50% of patients experience recurrence of disease after chemotherapy. Upfront detection of recurring patients could offer alternative treatments. Deep learning has shown potential in predicting recurrence of various cancer types but suffers from lack of interpretability. Particularly in prediction of recurrence, an understanding of the model’s decision could eventually result in novel treatments. Methods We developed a deep learning-based pipeline to predict recurrence of DLBCL based on histological images of a publicly available cohort. We utilized attention-based classification to highlight areas within the images that were of high relevance for the model’s classification. Subsequently, we segmented the nuclei within these areas, calculated morphological features, and statistically analyzed them to find differences between recurred and non-recurred patients. Results We achieved an f1 score of 0.88 indicating that our model can distinguish non-recurred from recurred patients. Additionally, we found that features that are the most predictive of recurrence include large and irregularly shaped tumor cell nuclei. Discussion Our work underlines the value of histological images in predicting treatment outcomes and enhances our understanding of complex biological processes in aggressive, heterogeneous cancers like DLBCL. |
|---|---|
| ISSN: | 2731-9377 |