Unsupervised Detection of Suspicious Tissue Using Data Modeling and PCA

Breast cancer is a major cause of death and morbidity among women all over the world, and it is a fact that early detection is a key in improving outcomes. Therefore development of algorithms that aids radiologists in identifying changes in breast tissue early on is essential. In this work an algori...

Full description

Saved in:
Bibliographic Details
Main Authors: Ikhlas Abdel-Qader, Lixin Shen, Christina Jacobs, Fadi Abu Amara, Sarah Pashaie-Rad
Format: Article
Language:English
Published: Wiley 2006-01-01
Series:International Journal of Biomedical Imaging
Online Access:http://dx.doi.org/10.1155/IJBI/2006/57850
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Breast cancer is a major cause of death and morbidity among women all over the world, and it is a fact that early detection is a key in improving outcomes. Therefore development of algorithms that aids radiologists in identifying changes in breast tissue early on is essential. In this work an algorithm that investigates the use of principal components analysis (PCA) is developed to identify suspicious regions on mammograms. The algorithm employs linear structure and curvelinear modeling prior to PCA implementations. Evaluation of the algorithm is based on the percentage of correct classification, false positive (FP) and false negative (FN) in all experimental work using real data. Over 90% accuracy in block classification is achieved using mammograms from MIAS database.
ISSN:1687-4188
1687-4196