Para-Holomorphic Statistical Structure with Cheeger Gromoll Metric

We consider the family of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula> connections <inline-formula><math xmlns="http://www....

Full description

Saved in:
Bibliographic Details
Main Authors: Esmaeil Peyghan, Leila Nourmohammadifar, Ion Mihai
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/11/1735
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider the family of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula> connections <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mo>∇</mo><mrow><mo stretchy="false">(</mo><mi>λ</mi><mo stretchy="false">)</mo></mrow></msup></semantics></math></inline-formula> on a statistical manifold <i>M</i> equipped with a pair of conjugate connections <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∇</mo><mo>=</mo><msup><mo>∇</mo><mrow><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></msup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mo>∇</mo><mo>*</mo></msup><mo>=</mo><msup><mo>∇</mo><mrow><mo stretchy="false">(</mo><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></msup></mrow></semantics></math></inline-formula>, where the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula> connection is defined as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mo>∇</mo><mrow><mo stretchy="false">(</mo><mi>λ</mi><mo stretchy="false">)</mo></mrow></msup><mo>=</mo><mstyle scriptlevel="0" displaystyle="true"><mfrac><mrow><mn>1</mn><mo>+</mo><mi>λ</mi></mrow><mn>2</mn></mfrac></mstyle><mo>∇</mo><mo>+</mo><mstyle scriptlevel="0" displaystyle="true"><mfrac><mrow><mn>1</mn><mo>−</mo><mi>λ</mi></mrow><mn>2</mn></mfrac></mstyle><msup><mo>∇</mo><mo>*</mo></msup></mrow></semantics></math></inline-formula>. This paper develops expressions for the vertical and horizontal distributions on the tangent bundle of the statistical manifold <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>,</mo><msup><mo>∇</mo><mrow><mo stretchy="false">(</mo><mi>λ</mi><mo stretchy="false">)</mo></mrow></msup><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> and introduces the concept of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula>-adapted frames. We also derive the Levi–Civita connection <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow><mmultiscripts><mover accent="true"><mo>∇</mo><mo>^</mo></mover><none></none><none></none><mprescripts></mprescripts><none></none><mrow><mi>C</mi><mi>G</mi></mrow></mmultiscripts></mrow><mrow><mo stretchy="false">(</mo><mi>λ</mi><mo stretchy="false">)</mo></mrow></msup></semantics></math></inline-formula> of the tangent bundle <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><mi>M</mi></mrow></semantics></math></inline-formula>, which is equipped with the Cheeger Gromoll-type metric <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mmultiscripts><mi>g</mi><none></none><none></none><mprescripts></mprescripts><none></none><mrow><mi>C</mi><mi>G</mi></mrow></mmultiscripts></mrow></semantics></math></inline-formula>. We study the statistical structure <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mmultiscripts><mi>g</mi><none></none><none></none><mprescripts></mprescripts><none></none><mrow><mi>C</mi><mi>G</mi></mrow></mmultiscripts><mo>,</mo><msup><mrow><mmultiscripts><mo>∇</mo><none></none><none></none><mprescripts></mprescripts><none></none><mrow><mi>C</mi><mi>G</mi></mrow></mmultiscripts></mrow><mrow><mo stretchy="false">(</mo><mi>λ</mi><mo stretchy="false">)</mo></mrow></msup><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> on the tangent bundle <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><mi>M</mi></mrow></semantics></math></inline-formula>, which is naturally induced from the statistical manifold <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>,</mo><msup><mo>∇</mo><mrow><mo stretchy="false">(</mo><mi>λ</mi><mo stretchy="false">)</mo></mrow></msup><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>. By introducing a para-holomorphic structure on the statistical manifold <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>,</mo><msup><mo>∇</mo><mrow><mo stretchy="false">(</mo><mi>λ</mi><mo stretchy="false">)</mo></mrow></msup><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>, we construct a para-Hermitian structure on the tangent bundle <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><mi>M</mi></mrow></semantics></math></inline-formula> and examine its integrability. Finally, we present the conditions under which these bundles admit a para-holomorphic structure.
ISSN:2227-7390