Methods for detection of cardiac glycogen-autophagy

Glycogen-autophagy (‘glycophagy’) is a selective autophagy process involved in delivering glycogen to the lysosome for bulk degradation. Glycophagy protein intermediaries include STBD1 as a glycogen tagging receptor, delivering the glycogen cargo into the forming phagosome by partnering with the Atg...

Full description

Saved in:
Bibliographic Details
Main Authors: Parisa Koutsifeli, Lorna J. Daniels, Joshua Neale, Sarah Fong, Upasna Varma, Marco Annandale, Xun Li, Yohanes Nursalim, James R. Bell, Kate L. Weeks, Aleksandr Stotland, David J. Taylor, Roberta A. Gottlieb, Lea M.D. Delbridge, Kimberley M. Mellor
Format: Article
Language:English
Published: Taylor & Francis Group 2024-12-01
Series:Autophagy Reports
Subjects:
Online Access:https://www.tandfonline.com/doi/10.1080/27694127.2024.2405331
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846136334599585792
author Parisa Koutsifeli
Lorna J. Daniels
Joshua Neale
Sarah Fong
Upasna Varma
Marco Annandale
Xun Li
Yohanes Nursalim
James R. Bell
Kate L. Weeks
Aleksandr Stotland
David J. Taylor
Roberta A. Gottlieb
Lea M.D. Delbridge
Kimberley M. Mellor
author_facet Parisa Koutsifeli
Lorna J. Daniels
Joshua Neale
Sarah Fong
Upasna Varma
Marco Annandale
Xun Li
Yohanes Nursalim
James R. Bell
Kate L. Weeks
Aleksandr Stotland
David J. Taylor
Roberta A. Gottlieb
Lea M.D. Delbridge
Kimberley M. Mellor
author_sort Parisa Koutsifeli
collection DOAJ
description Glycogen-autophagy (‘glycophagy’) is a selective autophagy process involved in delivering glycogen to the lysosome for bulk degradation. Glycophagy protein intermediaries include STBD1 as a glycogen tagging receptor, delivering the glycogen cargo into the forming phagosome by partnering with the Atg8 homolog, GABARAPL1. Glycophagy is emerging as a key process of energy metabolism and development of reliable tools for assessment of glycophagy activity is an important priority. Here we show that antibodies raised against the N-terminus of the GABARAPL1 protein (but not the full-length protein) detected a specific endogenous GABARAPL1 immunoblot band at 18kDa. A stable GFP-GABARAPL1 cardiac cell line was used to quantify GABARAPL1 lysosomal flux via measurement of GFP puncta in response to lysosomal inhibition with bafilomycin. Endogenous glycophagy flux was quantified in primary rat ventricular myocytes by the extent of glycogen accumulation with bafilomycin combined with chloroquine treatment (no effect observed with bafilomycin or chloroquine alone). In wild-type isolated mouse hearts, bafilomycin alone and bafilomycin combined with chloroquine (but not chloroquine alone) elicited a significant increase in glycogen content signifying basal glycophagy flux. Collectively, these methodologies provide a comprehensive toolbox for tracking cardiac glycophagy activity to advance research into the role of glycophagy in health and disease.
format Article
id doaj-art-896be00534814dda8ffacc5947942049
institution Kabale University
issn 2769-4127
language English
publishDate 2024-12-01
publisher Taylor & Francis Group
record_format Article
series Autophagy Reports
spelling doaj-art-896be00534814dda8ffacc59479420492024-12-09T07:19:32ZengTaylor & Francis GroupAutophagy Reports2769-41272024-12-013110.1080/27694127.2024.2405331Methods for detection of cardiac glycogen-autophagyParisa Koutsifeli0Lorna J. Daniels1Joshua Neale2Sarah Fong3Upasna Varma4Marco Annandale5Xun Li6Yohanes Nursalim7James R. Bell8Kate L. Weeks9Aleksandr Stotland10David J. Taylor11Roberta A. Gottlieb12Lea M.D. Delbridge13Kimberley M. Mellor14Department of Physiology, University of Auckland, New ZealandDepartment of Physiology, University of Auckland, New ZealandDepartment of Physiology, University of Auckland, New ZealandDepartment of Physiology, University of Auckland, New ZealandDepartment of Anatomy & Physiology, University of Melbourne, AustraliaDepartment of Physiology, University of Auckland, New ZealandDepartment of Physiology, University of Auckland, New ZealandDepartment of Physiology, University of Auckland, New ZealandDepartment of Microbiology, Anatomy, Physiology & Pharmacology, La Trobe University, AustraliaDepartment of Anatomy & Physiology, University of Melbourne, AustraliaDepartment of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USADepartment of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USADepartment of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USADepartment of Physiology, University of Auckland, New ZealandDepartment of Physiology, University of Auckland, New ZealandGlycogen-autophagy (‘glycophagy’) is a selective autophagy process involved in delivering glycogen to the lysosome for bulk degradation. Glycophagy protein intermediaries include STBD1 as a glycogen tagging receptor, delivering the glycogen cargo into the forming phagosome by partnering with the Atg8 homolog, GABARAPL1. Glycophagy is emerging as a key process of energy metabolism and development of reliable tools for assessment of glycophagy activity is an important priority. Here we show that antibodies raised against the N-terminus of the GABARAPL1 protein (but not the full-length protein) detected a specific endogenous GABARAPL1 immunoblot band at 18kDa. A stable GFP-GABARAPL1 cardiac cell line was used to quantify GABARAPL1 lysosomal flux via measurement of GFP puncta in response to lysosomal inhibition with bafilomycin. Endogenous glycophagy flux was quantified in primary rat ventricular myocytes by the extent of glycogen accumulation with bafilomycin combined with chloroquine treatment (no effect observed with bafilomycin or chloroquine alone). In wild-type isolated mouse hearts, bafilomycin alone and bafilomycin combined with chloroquine (but not chloroquine alone) elicited a significant increase in glycogen content signifying basal glycophagy flux. Collectively, these methodologies provide a comprehensive toolbox for tracking cardiac glycophagy activity to advance research into the role of glycophagy in health and disease.https://www.tandfonline.com/doi/10.1080/27694127.2024.2405331Atg8autophagyGABARAPL1glycogenglycophagy flux
spellingShingle Parisa Koutsifeli
Lorna J. Daniels
Joshua Neale
Sarah Fong
Upasna Varma
Marco Annandale
Xun Li
Yohanes Nursalim
James R. Bell
Kate L. Weeks
Aleksandr Stotland
David J. Taylor
Roberta A. Gottlieb
Lea M.D. Delbridge
Kimberley M. Mellor
Methods for detection of cardiac glycogen-autophagy
Autophagy Reports
Atg8
autophagy
GABARAPL1
glycogen
glycophagy flux
title Methods for detection of cardiac glycogen-autophagy
title_full Methods for detection of cardiac glycogen-autophagy
title_fullStr Methods for detection of cardiac glycogen-autophagy
title_full_unstemmed Methods for detection of cardiac glycogen-autophagy
title_short Methods for detection of cardiac glycogen-autophagy
title_sort methods for detection of cardiac glycogen autophagy
topic Atg8
autophagy
GABARAPL1
glycogen
glycophagy flux
url https://www.tandfonline.com/doi/10.1080/27694127.2024.2405331
work_keys_str_mv AT parisakoutsifeli methodsfordetectionofcardiacglycogenautophagy
AT lornajdaniels methodsfordetectionofcardiacglycogenautophagy
AT joshuaneale methodsfordetectionofcardiacglycogenautophagy
AT sarahfong methodsfordetectionofcardiacglycogenautophagy
AT upasnavarma methodsfordetectionofcardiacglycogenautophagy
AT marcoannandale methodsfordetectionofcardiacglycogenautophagy
AT xunli methodsfordetectionofcardiacglycogenautophagy
AT yohanesnursalim methodsfordetectionofcardiacglycogenautophagy
AT jamesrbell methodsfordetectionofcardiacglycogenautophagy
AT katelweeks methodsfordetectionofcardiacglycogenautophagy
AT aleksandrstotland methodsfordetectionofcardiacglycogenautophagy
AT davidjtaylor methodsfordetectionofcardiacglycogenautophagy
AT robertaagottlieb methodsfordetectionofcardiacglycogenautophagy
AT leamddelbridge methodsfordetectionofcardiacglycogenautophagy
AT kimberleymmellor methodsfordetectionofcardiacglycogenautophagy