Monte Carlo Simulation of Operator Dynamics and Entanglement in Dual-Unitary Circuits

We investigate operator dynamics and entanglement growth in dual-unitary circuits, a class of locally scrambled quantum systems that enables efficient simulation beyond the exponential complexity of the Hilbert space. By mapping the operator evolution to a classical Markov process, we perform Monte...

Full description

Saved in:
Bibliographic Details
Main Authors: Menghan Song, Zhaoyi Zeng, Ting-Tung Wang, Yi-Zhuang You, Zi Yang Meng, Pengfei Zhang
Format: Article
Language:English
Published: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften 2025-04-01
Series:Quantum
Online Access:https://quantum-journal.org/papers/q-2025-04-01-1681/pdf/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849337727509594112
author Menghan Song
Zhaoyi Zeng
Ting-Tung Wang
Yi-Zhuang You
Zi Yang Meng
Pengfei Zhang
author_facet Menghan Song
Zhaoyi Zeng
Ting-Tung Wang
Yi-Zhuang You
Zi Yang Meng
Pengfei Zhang
author_sort Menghan Song
collection DOAJ
description We investigate operator dynamics and entanglement growth in dual-unitary circuits, a class of locally scrambled quantum systems that enables efficient simulation beyond the exponential complexity of the Hilbert space. By mapping the operator evolution to a classical Markov process, we perform Monte Carlo simulations to access the time evolution of local operator density and entanglement with polynomial computational cost. Our results reveal that the operator density converges exponentially to a steady-state value, with analytical bounds that match our simulations. Additionally, we observe a volume-law scaling of operator entanglement across different subregions, and identify a critical transition from maximal to sub-maximal entanglement growth, governed by the circuit’s gate parameter. This transition, confirmed by both mean-field theory and Monte Carlo simulations, provides new insights into operator entanglement dynamics in quantum many-body systems. Our work offers a scalable computational framework for studying long-time operator evolution and entanglement, paving the way for deeper exploration of quantum information dynamics.
format Article
id doaj-art-7a0ca9d99e214d20a1c12fe94a2abc39
institution Kabale University
issn 2521-327X
language English
publishDate 2025-04-01
publisher Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
record_format Article
series Quantum
spelling doaj-art-7a0ca9d99e214d20a1c12fe94a2abc392025-08-20T03:44:36ZengVerein zur Förderung des Open Access Publizierens in den QuantenwissenschaftenQuantum2521-327X2025-04-019168110.22331/q-2025-04-01-168110.22331/q-2025-04-01-1681Monte Carlo Simulation of Operator Dynamics and Entanglement in Dual-Unitary CircuitsMenghan SongZhaoyi ZengTing-Tung WangYi-Zhuang YouZi Yang MengPengfei ZhangWe investigate operator dynamics and entanglement growth in dual-unitary circuits, a class of locally scrambled quantum systems that enables efficient simulation beyond the exponential complexity of the Hilbert space. By mapping the operator evolution to a classical Markov process, we perform Monte Carlo simulations to access the time evolution of local operator density and entanglement with polynomial computational cost. Our results reveal that the operator density converges exponentially to a steady-state value, with analytical bounds that match our simulations. Additionally, we observe a volume-law scaling of operator entanglement across different subregions, and identify a critical transition from maximal to sub-maximal entanglement growth, governed by the circuit’s gate parameter. This transition, confirmed by both mean-field theory and Monte Carlo simulations, provides new insights into operator entanglement dynamics in quantum many-body systems. Our work offers a scalable computational framework for studying long-time operator evolution and entanglement, paving the way for deeper exploration of quantum information dynamics.https://quantum-journal.org/papers/q-2025-04-01-1681/pdf/
spellingShingle Menghan Song
Zhaoyi Zeng
Ting-Tung Wang
Yi-Zhuang You
Zi Yang Meng
Pengfei Zhang
Monte Carlo Simulation of Operator Dynamics and Entanglement in Dual-Unitary Circuits
Quantum
title Monte Carlo Simulation of Operator Dynamics and Entanglement in Dual-Unitary Circuits
title_full Monte Carlo Simulation of Operator Dynamics and Entanglement in Dual-Unitary Circuits
title_fullStr Monte Carlo Simulation of Operator Dynamics and Entanglement in Dual-Unitary Circuits
title_full_unstemmed Monte Carlo Simulation of Operator Dynamics and Entanglement in Dual-Unitary Circuits
title_short Monte Carlo Simulation of Operator Dynamics and Entanglement in Dual-Unitary Circuits
title_sort monte carlo simulation of operator dynamics and entanglement in dual unitary circuits
url https://quantum-journal.org/papers/q-2025-04-01-1681/pdf/
work_keys_str_mv AT menghansong montecarlosimulationofoperatordynamicsandentanglementindualunitarycircuits
AT zhaoyizeng montecarlosimulationofoperatordynamicsandentanglementindualunitarycircuits
AT tingtungwang montecarlosimulationofoperatordynamicsandentanglementindualunitarycircuits
AT yizhuangyou montecarlosimulationofoperatordynamicsandentanglementindualunitarycircuits
AT ziyangmeng montecarlosimulationofoperatordynamicsandentanglementindualunitarycircuits
AT pengfeizhang montecarlosimulationofoperatordynamicsandentanglementindualunitarycircuits