Fault Diagnosis and Identification of Abnormal Variables Based on Center Nearest Neighbor Reconstruction Theory
Fault diagnosis and identification are important goals in ensuring the safe production of industrial processes. This article proposes a data reconstruction method based on Center Nearest Neighbor (CNN) theory for fault diagnosis and abnormal variable identification. Firstly, the <i>k</i>...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Mathematics |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2227-7390/13/12/2035 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Fault diagnosis and identification are important goals in ensuring the safe production of industrial processes. This article proposes a data reconstruction method based on Center Nearest Neighbor (CNN) theory for fault diagnosis and abnormal variable identification. Firstly, the <i>k</i>-nearest neighbor (<i>k</i>-NN) method is used to monitor the process and determine whether there is a fault. Secondly, when there is a fault, a high-precision CNN reconstruction algorithm is used to reconstruct each variable and calculate the reconstructed control index. The variable that reduces the control index the most is replaced with the reconstructed variable in sequence, and the iteration is carried out until the control index is within the control range, and all abnormal variables are finally determined. The accuracy of the CNN reconstruction method was verified through a numerical example. Additionally, it was confirmed that the method is not only suitable for fault diagnosis of a single sensor but also can be used sensor faults that occur simultaneously or propagate due to variable correlation. Finally, the effectiveness and applicability of the proposed method were validated through the penicillin fermentation process. |
|---|---|
| ISSN: | 2227-7390 |