A Deep Learning-Based Method for Detection of Multiple Maneuvering Targets and Parameter Estimation
With the rapid development of drone technology, target detection and estimation of radar parameters for maneuvering targets have become crucial. Drones, with their small radar cross-sections and high maneuverability, cause range migration (RM) and Doppler frequency migration (DFM), which complicate...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Remote Sensing |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2072-4292/17/15/2574 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | With the rapid development of drone technology, target detection and estimation of radar parameters for maneuvering targets have become crucial. Drones, with their small radar cross-sections and high maneuverability, cause range migration (RM) and Doppler frequency migration (DFM), which complicate the use of traditional radar methods and reduce detection accuracy. Furthermore, the detection of multiple targets exacerbates the issue, as target interference complicates detection and impedes parameter estimation. To address this issue, this paper presents a method for high-resolution multi-drone target detection and parameter estimation based on the adjacent cross-correlation function (ACCF), fractional Fourier transform (FrFT), and deep learning techniques. The ACCF operation is first utilized to eliminate RM and reduce the higher-order components of DFM. Subsequently, the FrFT is applied to achieve coherent integration and enhance energy concentration. Additionally, a convolutional neural network (CNN) is employed to address issues of spectral overlap in multi-target FrFT processing, further improving resolution and detection performance. Experimental results demonstrate that the proposed method significantly outperforms existing approaches in probability of detection and accuracy of parameter estimation for multiple maneuvering targets, underscoring its strong potential for practical applications. |
|---|---|
| ISSN: | 2072-4292 |