The sequential Henstock-Kurzweil delta integral on time scales

In this study, the basic theory of the sequential Henstock-Kurzweil delta integral on time scales will be discussed. First, we give the notion and the elementary properties of this integral; then we show the equivalence of the Henstock-Kurzweil delta integral and the sequential Henstock-Kurzweil del...

Full description

Saved in:
Bibliographic Details
Main Authors: Liu Yang, Shao Yabin
Format: Article
Language:English
Published: De Gruyter 2024-11-01
Series:Demonstratio Mathematica
Subjects:
Online Access:https://doi.org/10.1515/dema-2024-0056
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846171034472939520
author Liu Yang
Shao Yabin
author_facet Liu Yang
Shao Yabin
author_sort Liu Yang
collection DOAJ
description In this study, the basic theory of the sequential Henstock-Kurzweil delta integral on time scales will be discussed. First, we give the notion and the elementary properties of this integral; then we show the equivalence of the Henstock-Kurzweil delta integral and the sequential Henstock-Kurzweil delta integral on time scales. In addition, we consider the Cauchy criterion and the Fundamental Theorems of Calculus. Finally, we prove Henstock’s lemma and give some convergence theorems. As an application, we consider the existence theorem of a kind of functional dynamic equations.
format Article
id doaj-art-493a780169874347ab2407061d07d55f
institution Kabale University
issn 2391-4661
language English
publishDate 2024-11-01
publisher De Gruyter
record_format Article
series Demonstratio Mathematica
spelling doaj-art-493a780169874347ab2407061d07d55f2024-11-11T08:36:16ZengDe GruyterDemonstratio Mathematica2391-46612024-11-01571185610.1515/dema-2024-0056The sequential Henstock-Kurzweil delta integral on time scalesLiu Yang0Shao Yabin1School of Science, Chongqing University of Posts and Telecommunications, Nanan, 400065, Chongqing, P. R. ChinaSchool of Science, Chongqing University of Posts and Telecommunications, Nanan, 400065, Chongqing, P. R. ChinaIn this study, the basic theory of the sequential Henstock-Kurzweil delta integral on time scales will be discussed. First, we give the notion and the elementary properties of this integral; then we show the equivalence of the Henstock-Kurzweil delta integral and the sequential Henstock-Kurzweil delta integral on time scales. In addition, we consider the Cauchy criterion and the Fundamental Theorems of Calculus. Finally, we prove Henstock’s lemma and give some convergence theorems. As an application, we consider the existence theorem of a kind of functional dynamic equations.https://doi.org/10.1515/dema-2024-0056sequential henstock-kurzweil integraltime scalesdelta integralconvergence theoremsfunctional dynamic equations26a3926a4226e70
spellingShingle Liu Yang
Shao Yabin
The sequential Henstock-Kurzweil delta integral on time scales
Demonstratio Mathematica
sequential henstock-kurzweil integral
time scales
delta integral
convergence theorems
functional dynamic equations
26a39
26a42
26e70
title The sequential Henstock-Kurzweil delta integral on time scales
title_full The sequential Henstock-Kurzweil delta integral on time scales
title_fullStr The sequential Henstock-Kurzweil delta integral on time scales
title_full_unstemmed The sequential Henstock-Kurzweil delta integral on time scales
title_short The sequential Henstock-Kurzweil delta integral on time scales
title_sort sequential henstock kurzweil delta integral on time scales
topic sequential henstock-kurzweil integral
time scales
delta integral
convergence theorems
functional dynamic equations
26a39
26a42
26e70
url https://doi.org/10.1515/dema-2024-0056
work_keys_str_mv AT liuyang thesequentialhenstockkurzweildeltaintegralontimescales
AT shaoyabin thesequentialhenstockkurzweildeltaintegralontimescales
AT liuyang sequentialhenstockkurzweildeltaintegralontimescales
AT shaoyabin sequentialhenstockkurzweildeltaintegralontimescales