Incorporating a Deep Neural Network into Moving Horizon Estimation for Embedded Thermal Torque Derating of an Electric Machine
This study presents a novel state estimation approach integrating Deep Neural Networks (DNNs) into Moving Horizon Estimation (MHE). This is a shift from using traditional physics-based models within MHE towards data-driven techniques. Specifically, a Long Short-Term Memory (LSTM)-based DNN is traine...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Energies |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1996-1073/18/14/3813 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This study presents a novel state estimation approach integrating Deep Neural Networks (DNNs) into Moving Horizon Estimation (MHE). This is a shift from using traditional physics-based models within MHE towards data-driven techniques. Specifically, a Long Short-Term Memory (LSTM)-based DNN is trained using synthetic data derived from a high-fidelity thermal model of a Permanent Magnet Synchronous Machine (PMSM), applied within a thermal derating torque control strategy for battery electric vehicles. The trained DNN is directly embedded within an MHE formulation, forming a discrete-time nonlinear optimal control problem (OCP) solved via the acados optimization framework. Model-in-the-Loop simulations demonstrate accurate temperature estimation even under noisy sensor conditions and simulated sensor failures. Real-time implementation on embedded hardware confirms practical feasibility, achieving computational performance exceeding real-time requirements threefold. By integrating the learned LSTM-based dynamics directly into MHE, this work achieves state estimation accuracy, robustness, and adaptability while reducing modeling efforts and complexity. Overall, the results highlight the effectiveness of combining model-based and data-driven methods in safety-critical automotive control systems. |
|---|---|
| ISSN: | 1996-1073 |