Numerical Simulation Based on Interpolation Technique for Multi-Term Time-Fractional Convection–Diffusion Equations
This paper introduces a novel approach for solving multi-term time-fractional convection–diffusion equations with the fractional derivatives in the Caputo sense. The proposed highly accurate numerical algorithm is based on the barycentric rational interpolation collocation method (BRICM) in conjunct...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2024-11-01
|
| Series: | Fractal and Fractional |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2504-3110/8/12/687 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper introduces a novel approach for solving multi-term time-fractional convection–diffusion equations with the fractional derivatives in the Caputo sense. The proposed highly accurate numerical algorithm is based on the barycentric rational interpolation collocation method (BRICM) in conjunction with the Gauss–Legendre quadrature rule. The discrete scheme constructed in this paper can achieve high computational accuracy with very few interval partitioning points. To verify the effectiveness of the present discrete scheme, some numerical examples are presented and are compared with the other existing method. Numerical results demonstrate the effectiveness of the method and the correctness of the theoretical analysis. |
|---|---|
| ISSN: | 2504-3110 |