Semi-Classical Limit and Quantum Corrections in Non-Coincidence Power-Law <i>f</i>(<i>Q</i>)-Cosmology
Within the framework of symmetric teleparallel <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mfenced open="(" close=")"><mi>Q</mi></mfenced...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2024-09-01
|
| Series: | Axioms |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2075-1680/13/9/619 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Within the framework of symmetric teleparallel <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mfenced open="(" close=")"><mi>Q</mi></mfenced></mrow></semantics></math></inline-formula>-gravity, using a connection defined in the non-coincidence gauge, we derive the Wheeler–DeWitt equation of quantum cosmology. The gravitational field equation in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mfenced open="(" close=")"><mi>Q</mi></mfenced></mrow></semantics></math></inline-formula>-gravity permits a minisuperspace description, rendering the Wheeler–DeWitt equation a single inhomogeneous partial differential equation. We use the power-law <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mfenced open="(" close=")"><mi>Q</mi></mfenced><mo>=</mo><msub><mi>f</mi><mn>0</mn></msub><msup><mi>Q</mi><mi>μ</mi></msup></mrow></semantics></math></inline-formula> model, and with the application of linear quantum observables, we calculate the wave function of the universe. Finally, we investigate the effects of the quantum correction terms in the semi-classical limit. |
|---|---|
| ISSN: | 2075-1680 |