Semi-Classical Limit and Quantum Corrections in Non-Coincidence Power-Law <i>f</i>(<i>Q</i>)-Cosmology

Within the framework of symmetric teleparallel <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mfenced open="(" close=")"><mi>Q</mi></mfenced...

Full description

Saved in:
Bibliographic Details
Main Author: Andronikos Paliathanasis
Format: Article
Language:English
Published: MDPI AG 2024-09-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/13/9/619
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Within the framework of symmetric teleparallel <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mfenced open="(" close=")"><mi>Q</mi></mfenced></mrow></semantics></math></inline-formula>-gravity, using a connection defined in the non-coincidence gauge, we derive the Wheeler–DeWitt equation of quantum cosmology. The gravitational field equation in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mfenced open="(" close=")"><mi>Q</mi></mfenced></mrow></semantics></math></inline-formula>-gravity permits a minisuperspace description, rendering the Wheeler–DeWitt equation a single inhomogeneous partial differential equation. We use the power-law <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mfenced open="(" close=")"><mi>Q</mi></mfenced><mo>=</mo><msub><mi>f</mi><mn>0</mn></msub><msup><mi>Q</mi><mi>μ</mi></msup></mrow></semantics></math></inline-formula> model, and with the application of linear quantum observables, we calculate the wave function of the universe. Finally, we investigate the effects of the quantum correction terms in the semi-classical limit.
ISSN:2075-1680