EnhanceCenter for improving point based tracking and rich feature representation

Abstract In this study, we propose EnhanceCenter, a multiple-object tracking model that demonstrates enhanced tracking efficiency and stability while reducing dependencies on computationally intensive detectors. EnhanceCenter, based on the CenterTrack method, introduces three key improvements. First...

Full description

Saved in:
Bibliographic Details
Main Authors: Hyun-Sung Yang, Sung-Wook Park, Se-Hoon Jung, Chun-Bo Sim
Format: Article
Language:English
Published: Nature Portfolio 2025-03-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-025-88924-2
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract In this study, we propose EnhanceCenter, a multiple-object tracking model that demonstrates enhanced tracking efficiency and stability while reducing dependencies on computationally intensive detectors. EnhanceCenter, based on the CenterTrack method, introduces three key improvements. First, a channel–spatial–spatial feature fusion module effectively utilizes object appearance information, enhancing tracking in complex scenes. Second, the backbone network weights are optimized for multiple-object tracking tasks, enabling more effective feature extraction. Lastly, an improved association method increases long-term tracking stability, maintaining consistency during occlusions or detection failures. Experiments on various MOT benchmarks demonstrated the performance of EnhanceCenter against models using high-performance detectors. On the MOT17 test set, EnhanceCenter outperformed CenterTrack with a 1.6% improvement in IDF1 and achieved a HOTA of 55.1%, surpassing leading center-point-based tracking studies, such as TransTrack and TransCenter. The MOT20 dataset showed a significant 13% improvement in IDF1 compared to CenterTrack. This research underscores the potential of lightweight detectors in achieving state-of-the-art multiple-object tracking performance, paving the way for more efficient tracking solutions in complex environments.
ISSN:2045-2322