Large-scale timing synchronization based on linear-optics timing detectors

We presented an attosecond-precision timing detector based on linear optics. The minimum measurement floor is 1×10–10 fs2/Hz with only 1 mW input optical power. With this novel technique, the residual dispersion of a 5.2 km fiber link is characterized and precisely compensated. Finally, a comprehens...

Full description

Saved in:
Bibliographic Details
Main Authors: Tong Wang, Mingzhe Li, Yi Zhang, Jie Yang, Yulin Shen, Ke Zhang, Dehui Pan, Jiahui Yao, Haoyang Sun, Ming Xin
Format: Article
Language:English
Published: Cambridge University Press 2025-01-01
Series:High Power Laser Science and Engineering
Subjects:
Online Access:https://www.cambridge.org/core/product/identifier/S2095471925000301/type/journal_article
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We presented an attosecond-precision timing detector based on linear optics. The minimum measurement floor is 1×10–10 fs2/Hz with only 1 mW input optical power. With this novel technique, the residual dispersion of a 5.2 km fiber link is characterized and precisely compensated. Finally, a comprehensive feedback model has been developed to analyze the noise coupling in a long-distance link stabilization system. The simulation results demonstrate an out-of-loop jitter of merely 359 as, integrated at [1 Hz, 1 MHz], at 1 mW input power per photodetector of our timing detector. Remarkably, the system is capable of maintaining sub-femtosecond precision even at optical power levels as low as 240 nW (for a 5.2 km link length), or link lengths as long as 20 km (with 1 μW optical power), respectively.
ISSN:2095-4719
2052-3289