Entropy Alternatives for Equilibrium and Out-of-Equilibrium Systems

We introduce a novel entropy-related function, non-repeatability, designed to capture dynamical behaviors in complex systems. Its normalized form, mutability, has been previously applied in statistical physics as a dynamical entropy measure associated with any observable stored in a sequential file....

Full description

Saved in:
Bibliographic Details
Main Authors: Eugenio E. Vogel, Francisco J. Peña, Gonzalo Saravia, Patricio Vargas
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/27/7/689
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We introduce a novel entropy-related function, non-repeatability, designed to capture dynamical behaviors in complex systems. Its normalized form, mutability, has been previously applied in statistical physics as a dynamical entropy measure associated with any observable stored in a sequential file. We now extend this concept by calculating the sorted mutability for the same data file previously ordered by increasing or decreasing value. To present the scope and advantages of these quantities, we analyze two distinct systems: (a) Monte Carlo simulations of magnetic moments on a square lattice, and (b) seismic time series from the United States Geological Survey catalog. Both systems are well established in the literature, serving as robust benchmarks. Shannon entropy is employed as a reference point to assess the similarities and differences with the proposed measures. A key distinction lies in the sensitivity of non-repeatability and mutability to the temporal ordering of data, which contrasts with traditional entropy definitions. Moreover, sorted mutability reveals additional insights into the critical behavior of the systems under study.
ISSN:1099-4300