A scalable platform for EPSC-Induced MSC extracellular vesicles with therapeutic potential

Abstract Background Extracellular Vesicles (EVs) derived from mesenchymal stem cells (MSCs) have gained recognition as promising therapeutic and drug delivery agents in regenerative medicine. However, their clinical application is limited by donor variability, low scalability, and inconsistent thera...

Full description

Saved in:
Bibliographic Details
Main Authors: Shixin Gong, Nan Li, Qinqing Peng, Feng Wang, Rulong Du, Boyang Zhang, Jian Wang, Le Han, Yu Zhang, Zemin Ning, Shengjiang Tan, Yuchun Gu, Lida Wu
Format: Article
Language:English
Published: BMC 2025-08-01
Series:Stem Cell Research & Therapy
Subjects:
Online Access:https://doi.org/10.1186/s13287-025-04507-y
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Background Extracellular Vesicles (EVs) derived from mesenchymal stem cells (MSCs) have gained recognition as promising therapeutic and drug delivery agents in regenerative medicine. However, their clinical application is limited by donor variability, low scalability, and inconsistent therapeutic quality. To overcome these challenges, a robust and standardized production platform is urgently needed. Methods We developed a scalable biomanufacturing strategy by generating and expanding MSCs from extended pluripotent stem cells (EPSC) using a suspension bioreactor culture system. A fixed-bed bioreactor was integrated for automated, continuous expansion of iMSCs and downstream EV harvesting. EVs were isolated through a streamlined protocol and characterized for size, morphology, surface markers, and bioactivity. Therapeutic efficacy was assessed in a bleomycin-induced pulmonary fibrosis mouse model. Results iMSC-derived EVs (iMSC-EVs) exhibited comparable characteristics to primary MSC-EVs, including a size distribution of 70–80 nm, cup-shaped morphology, and expression of canonical EV markers (CD63, CD81, TSG101). iMSCs were expanded for up to 20 days in 3D culture, yielding > 5 × 10⁸ cells per batch using a suspension bioreactor culture system and producing ~ 1.2 × 10¹³ EV particles/day in a fixed-bed bioreactor. In vivo, iMSC-EVs significantly reduced Ashcroft fibrosis scores and bronchoalveolar lavage fluid protein levels in bleomycin-injured lungs, with therapeutic efficacy comparable to primary MSC-EVs. Conclusions This study establishes a scalable and standardized platform for producing high-quality iMSC-EVs using bioreactor-based systems. Our approach addresses key limitations in traditional EV production and sets the stage for AI-integrated, fully automated, GMP-compliant manufacturing of therapeutic EVs suitable for clinical translation.
ISSN:1757-6512